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LElTER TO THE EDlTOR 

Polynomial translation moduies and Casimir invariants 
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Departamento de M6todos MatemAticas, Universidad Complutense, 28040 Madrid, Spain 

Received 4 January 1993 

Abstract. We bve a positive answer to a question about the existence of any direct link 
between two apparently unrelated facts for a specific family of solvable Lie algebras: the 
structure of their modules of functions on one side, and the algebraic form of their Casimir 
invariants on the other. 

In a recent paper [l] (see also [Z] and references therein), Gonzilez L6pez et al have 
obtained a complete classification of finite-dimensional Lie algebras of first-order 
differential operators in two complex variables, i.e. operators of the form D =  

Let us recall the three basic steps involved (the terminology used closely follows 
that of reference [I]): 

(i) First of all, the classification of all fmite-dimensional Lie algebras of vector 
fields of the form U =A(& y ) d ,  +fZ(x, y)aY is required. This was already achieved by 
S Lie in his classical work [3]. He found 24 classes Q, (i= 1,. . . ,24) of such Lie 
algebras, some of which depend on parameters. 

fi(& Y)J ,  +fZ(& Y ) J y + g ( x ,  Y ) .  

Here we will be concerned with two of them, namely, 

Q5(a )= (J , ,a , ,xJ ,+aYJy1  a#O 

@,zo(a, r )  = { a x ,  J y ,  xJx f a Y J y ,  x a y , .  . . , X'Jy}  r >  1. 

(ii) Since the Lie bracket of two first order differential operators D = U + g, D' = 
v'+g' involves not only the commutator of the vector fields U, U' but, in addition, 
crossed terms in which the functions g, g' are acted upon by these vector fields, one 
needs to classify the finite-dimensional &-modules of C" functions for each of the 
24 Lie algebras above. 

(iii) Finally, one has to determine, for each &module M, the first cohomology 
group of Qt with coefficients in C"(C2)/M. 

The purpose of this letter is to provide an affirmative answer to an intriguing 
question raised in [ 11. It is related to the solution of step (ii) for the family of solvable 
Lie algebras Q 5 ( a ) .  Let us begin by recalling some relevant definitions. 

Definition 1. The finite-dimensional {Jx ,  d,}-modules are called translation modules. 
If such a module is spanned by polynomials (resp. monomials) then it is called a 
polynomial (resp. monomial) translation module. 

Definition 2. A polynomial is called a-homogeneous if the vector field xd, + ayJ ,  takes 
it into a multiple of itself. 
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Definition 3. A polynomial module is called a-homogeneous if it admits a basis of 
a-homogeneous polynomials. 

Proposition 1 [ 11. Any @,(a)-module (a # 0) is an a-homogeneous polynomial transla- 
tion module. Moreover, if CY is not a positive rational number, then the module is a 
monomial translation module. 

Example [l]: The polynomials 

span a non-monomial @,(a)-module for a =2. 
The proposition above suggests that the dependence of the algebraic structure of 

the @,(a)-modules on a being rational or not, could be related to the fact that these 
Lie algebras admit polynomial or rational Casimir invariants if and only if a is rational. 
This is the explicit question formulated in [I]. In order to provide a satisfactory answer 
we make free use of a few definitions and results from 141. 

In the basis AI = J,, A, = a,, A, = xJ, + ayJ,, the structure of the Lie algebra @,A.) 
is given by [A,,AJ=O, [Al,A3]=A,, [A2,A3]=aA2. Let us denote by S the 
symmetric algebra of @,(a) and by D(S) the associated quotient field. By 
dehition, rational formal Ca$mir invariants are ?e elements of D(S) '=  
{ h € D ( S ) :  A,(h)=O,Vj}, where Al=alJ,, &=anda.,, A,=-a,J.,-aa2Jo,. 

Under the canonical isomorphism, D(S)' turns out to be isomorphic to the set 
D( U)' of rational Casimir invariants, where D( U) denotes the quotient field of the 
universal enveloping algebra U. 

Consider now Si"= { h  E S: i , ( h )  = &h) =0, A,(h) = Ah}, the set of semi- 
invariants of weight A in the symmetric algebra. It is worth noticing that h E s:'' if 
and only if J , h = O  and h(a , ,a z )  is a-homogeneous with a degree of homogeneity 
equal to -A. 

Moreover, we know from [4] that fs D( S)' 0 f = h,/ hZ where hl , h2 E Si", for 
some A. 

As we will show in a moment, these two facts are responsible for the required link 
between the existence of rational Casimir invariants and the structure of the &,(a)- 
modules. 

Proposition2 For the LiealgebraQ,(a) (a # 0) thefollowingstatementsare equivalent: 
(a) a is positive rational; 
(b) there are strictly rational (i.e. rational and not polynomial) Casimir invariants; 
(c) there are non-monomial @,(a)-modules. 

Pro08 [ ( n ) o ( b ) ] .  This immediately follows from the method explained in [4]. As a 
matter of fact, Q5(a)  admits a unique (algebraically independent) formal Casimir 
invariant 6 = nyn;'. 

[ ( b ) a (  c)]. Let us assume that there exists a strictly rational formal Casimir invariant 
6 = aya;", i.e. a = m/n, where m, n are two different positive integers. Then it is very 
easy to verify that, under the action of J,,J,, the function x m + y "  generate the 
polynomials xm + yn. xm-l ,  . . . , x, y A - ' ,  . . . , y,  1 which constitute the basis of a non- 
monomial @,(a)-module. 

Remark: The same is true for q(x ,y) (x"+y") ,  where q stands for an arbitrary 
mfn-homogeneous polynomial. In fact, the example above, quoted from [I], corres- 
ponds to the particular choice q(x, y )  = xz in the case m = 2, n = 1. 

The following result makes explicit the structure of the @5(a)-modules: 

x4+xzy,4x3+2xy1x2,x,y, 1 
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[ (c )*(b) ] .  Suppose that there is a non-monomial &(a)-module M, and let h ( x , y )  
be a polynomial in its basis. All the monomials in h(x, y )  are a-homogeneous to the 
same degree. Therefore, they all are semi-invariant polynomials with the same weight. 
Hence, the quotient of any two of them must be a power of the unique (algebraically 
independent) Casimir invariant. The proof will be complete if we show that in the 
case C = arc$, i.e. a = -m/n is negative rational, h(x, y )  can be replaced as the basis 
of M by its monomials. 

Let us define C=x"'y' and Dc=D,"D;. Consider a polynomial h ( x , y ) =  
x'qy'oC'[no+nN,CNl+. . .+aNkCN*] as the basis of M with O <  NI <. . .< Nk, aN, # 0, 
Vi, and Dc(x$9)=0.  Clearly, ( D g N ~ h ) ( x , y )  is proportional to x". Thus, this 
monomial can eventually be incorporated to the basis and simultaneously eliminated 
from h. Now, up to a multiple of x", (D;"*-'h)(x,y) is proportional to xGfiC. 
Consequently, any term of the last form can also be eliminated from h. By continuing 
this argument we get the desired result. 

Finally, a brief comment on .Q2,,(a, r) is in order. Since it contains !&(a) as a Lie 
subalgebra, any Q20(a, r)-module is a &(a)-module. In fact, the above construction, 
starting from xm+y" leads, under the action of J,, J,, xJ,, . . . , x'J,, to a basis of a 
polynomial &(e, r)-module. Moreover, it is non-monomial whenever r <  a. 

For instance, x 3 + y  does the job in the case a =3. In fact, the example exhibited 
in [l]  is defined by the basis generated in this sense by x ( x 3 + y ) .  

It is to be emphasized that, contrary to the case of &(a), the Casimir invariants 
of .@20(a, r) (easy to find by the method in [4]) seems to have no direct influence on 
the structure of its modules. As far as the,module structure is concerned, it can be 
said that a2,,(a, r )  is 'subordinated' to &(a). Hierarchies of this type might play a 
significant role in classification problems in more than two variables. 

We wish to thank Dr A Gonzilez L6pez for some valuable suggestions and acknowledge 
partial financial support by the CICYT. One of us (CMO) thanks the Universidad 
Complutense for a Grant. 

References 

[I] G o d e z  Mpez A, Kamran N and Olver P J 1992 Conference Proceedings Conadinn Mathematical 

[2] G o d l e z  Mpez A, Kamran N and Olver PI 1991 J. Phys A: Mnlh Gen. 24 3995 
[3] Lie S 1880 Math. Ann 16 441 
141 Abellanas L and Martinez Alonso L 1975 J, Math. Phys. 16 1580 

Society 12 51 


